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Nonlocal approach to the analysis of the stress distribution in granular systems.
II. Application to experiment
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~Received 15 October 1997!

A theory of stress propagation in granular materials developed recently@Kenkre, Scott, Pease, and Hurd,
preceding paper, Phys. Rev. E57, 5841~1998!# is applied to the compaction of ceramic and metal powders in
pipes with previously unexplained experimental features such as nonmonotonic density and stress variation
along the axis of cylindrical compacts.@S1063-651X~98!14505-1#

PACS number~s!: 81.05.Rm, 61.43.Gt, 81.20.Ev
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I. BACKGROUND AND ESSENTIAL FEATURES
OF EXPERIMENTAL OBSERVATIONS

Although the study of granular systems has recently
come a topic of intense discussion@1,2#, the theoretical
analysis of the stress behavior in bounded systems such
powder metallurgical dies and ceramic compacts has b
limited to simplified physical arguments concerning t
transmission of stress into the walls of the confining syst
@3–5#. While such discussions provide a physical picture
how stress in granular systems propagates, they do not
vide for a calculation of observed features. Recent exp
mental results@6#, as well as data that have been available
the literature for many years@7–10#, show unique features
that have remained up to now unexplained. The present
per is an attempt to address such features with the help
recently constructed theoretical framework@11#. Essential
features of experimental observations are described in
rest of this section. A brief reminder of available theoretic
approaches appears in Sec. II. We extend the theore
framework of Ref.@11# to treat realistic depth-depende
boundary conditions and compare predictions of the the
to observations in Sec. III. In Sec. IV we investigate t
importance of invoking a spatially nonlocal framework th
is characteristic of our theory. Concluding remarks appea
Sec. V.

Generally, two approaches have been used to obtain
perimental information about the propagation of stress i
powder compact:~1! direct measurement of the stress
points within a compact, and~2! direct mapping of the den
sity distribution within a compact. The first approach i
volves the use of pressure sensors or strain gauges withi
at the edge of, a compact to measure the forces that ev
during pressing. Such measurements are limited by their
curacy and the ability of such gauges to measure the di
tion and location of the transmitted stress. The second
proach relies on the assumption that the density at a poin
a compact is related to the magnitude of the transmitted
plied stress at that point. Various forms of relations exist
571063-651X/98/57~5!/5850~8!/$15.00
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describe density-pressure behavior for granular systems@12–
15#.

Stress distribution observations include the experime
of Duwez and Zwell@16# who measured the pressure at t
side wall of a cylindrical compact of copper powder as
function of depth. The side pressure was found to decre
linearly with distance away from the surface where the pr
sure was applied. Train@9# placed strain gauges within a fi
of magnesium carbonate powder in a cylindrical die a
measured the distribution of transmitted stress as a func
of applied pressure during the compaction process. Along
centerline of the compact, the transmitted stress was
served to be a nonmonotonic function of the depth.

The measurement of density distributions is exemplifi
by the work of Kamm, Steinberg, and Wulff@7# who placed
a thin lead grid into a cylindrical copper powder fill, whic
was subsequently pressed. The distortion of the grid w
observed using x rays to determine the local variations in
density distribution of the compact. High and low dens
regions were observed along the centerline of the comp
while the density at the edge of the compact decreased f
high density in the upper corners to low density at the b
tom. Kuczynski and Zaplatynskyj@8# determined the density
distribution of a nickel powder compact by sectioning it a
testing the hardness of the compacted material as a func
of location on the face of the section. By assuming a relat
between the density of the material to its hardness, a den
distribution was produced showing behavior similar to th
seen by Kammet al. @7#. The density along the top surface o
the compact had a minimum in the center and increased
maximum value at the edge of the compact. Train@9# mea-
sured the density distribution of the magnesium carbon
compacts that he used in his direct stress measuremen
machining away sections and measuring the weight and
ume of the material removed. Contour plots of the dens
distribution were produced showing the density for seve
different applied pressures. Well defined regions of high a
low density along the centerline were observed, as wel
the decreasing density along the edge of the comp
Macleod and Marshall@10# compacted uranium dioxide
5850 © 1998 The American Physical Society
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57 5851NONLOCAL APPROACH TO THE . . . . II. . . .
powder in a cylindrical die for various applied pressur
then sectioned the compacts and placed them on ph
graphic plates. Density distributions were obtained us
contact autoradiography, where the exposure was calibr
by comparison with the optical density of plates that we
exposed to uranium dioxide pellets with known densiti
The contour plots they presented showed nonmonotonic
havior along the centerline of the compacts, with seve
regions of high and low density. Along the top surface,
density was a function of radius, increasing from a minimu
at the center to a maxiumum at the edge of the comp
similar to the observations of Kuczynski and Zaplatyns
@8#. Recently, Aydin, Briscoe, and Sanliturk@6# imbedded
small lead balls in an alumina powder compact and use
technique similar to that of Kammet al. @7# to determine the
density distributions. Again, regions of high and low dens
were observed on the centerline, with the density at the e
of the compact decreasing with depth. Along the top surf
of the compact, the density distribution, as a function of
radius, exhibited a minimum at the centerline and increa
toward the edge of the compact, consistent with previ
observations@8,10#.

From the experimental data found in the literature, and
widely accepted notion@17# that the spatial variation of the
density follows, in essence, the spatial variation of the str
three essential features describing the stress distributio
compacts can be inferred:~1! the applied stress at the to
surface is not constant, but increases from a minimum at
center to a maximum at the edges,~2! the stress at the edge
decreases with depth from the surface where the pressu
applied, and~3! the stress along the centerline is a nonmo
tonic function of depth, with well defined regions of low an
high stress. These features, which are common to obse
tions made in a variety of powders over a wide range
applied pressures, provide inputs, as well as a test for th
retical treatments of the stress distribution in compacts:
theoretical analysis known to us has adequately addre
the appearance of nonmonotonic stress behavior along
axis.

II. DISCUSSION OF AVAILABLE THEORETICAL
ANALYSES

A number of theoretical approaches have been develo
to describe the stress behavior in granular systems. Jan
@18# developed a theory that reproduced an exponential
crease along the walls of a silo. That theory was modified
Thompson@13# to apply to ceramic powder compacts, b
was unable to reproduce the nonmonotonic behavior al
the centerline. Edwards and collaborators@3,4# mathemati-
cally described ‘‘stress arches’’ that are believed to carry
stress to the walls of a pipe, but did not extend their theor
stress distributions within powder compacts. Bouchaudet al.
@5# proposed wavelike behavior for stress in granular s
tems, and Liuet al. @19# investigated a diffusive model@20#.
These were primarily interested in the calculation of t
stress in sandpiles and did not produce stress maps for p
der compacts. Aydinet al. @6# used a nonlinear stress-stra
constitutive relation in a finite-element calculation to pr
duce stress distributions that were similar to experime
results, but failed to reproduce the observed density p
along the compact centerline.
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Our theory@11# @Kenkre, Scott, Pease, and Hurd~KSPH!#
based on considerations@21,22# similar to those employed in
theories of exciton dynamics unifies the work of Boucha
et al. @5# and Liu et al. @19# through the use of a spatiall
nonlocal constitutive relation between the stressszz(x,y,z)
and a ‘‘stress flux’’j (x,y,z), which is composed of the shea
components of stress in the plane perpendicular to thez di-
rection, along which the compaction pressure is applied.
unification allows the KSPH theory to retain elements of t
light cones of Bouchaudet al. and their identification with
the arches of Edwards and co-workers@3,4# yet to incorpo-
rate some of the random stress transmission of Liuet al. that
must accompany a realistic picture of the random packing
granular systems. The present paper consists of an exten
of KSPH theory to address boundary conditions of releva
to experiment and of an application of the theory to seve
experimental observations in the literature.

III. EXTENSION OF THE KSPH THEORY
FOR REALISTIC BOUNDARY CONDITIONS

AND COMPARISON TO EXPERIMENT

As in Ref. @11#, we will restrict our analysis to two di-
mensions (x,z) for simplicity. For the illustrative boundary
condition whereszz(6L/2,z) vanishes, the solution of the
telegrapher’s equation for symmetric compacts has b
given in Ref.@11# as

szz~x,z!5(
k

Akgk~z!coskx, ~3.1!

where

gk~z!5e2~a/2!zFcoshVkz1
a

2Vk
sinh VkzG ,

Vk5Aa2/42c2k2 ~3.2!

FIG. 1. Measured stress at the edge of a cylindrical comp
normalized to the average applied pressure and plotted as a fun
of depth in the compact~taken from Duwez and Zwell@16#!. This
supports the use of a monotonic function to describe the stress a
walls.
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and

k5~2m11!
p

L
, m50,1,2, . . . . ~3.3!

The Fourier coefficients are determined by the applied p
sure on the top surface,s(x,0):

FIG. 2. Density distribution~in percent solid density! for cylin-
drical compacts of~a! magnesium carbonate powder pressed at
MPa ~taken from Train@9#!, ~b! alumina powder pressed at 38
MPa ~taken from Aydinet al. @6#!, and~c! uranium dioxide powder
pressed at 160 MPa~taken from Macleod and Marshall@10#!.
s-

Ak5
2

LE2L/2

L/2

dx s~x,0!coskx. ~3.4!

In the present paper, our interest is in obtaining str
distributions for systems with realistic rather than illustrati
initial and boundary conditions. Therefore, we do not ta
szz(6L/2,z) to vanish, but rather to be a given functionh(z)
of the depth:

szz~x,z!ux56L/25p0h~z!, ~3.5!

wherep0 is the average value of the applied stress at the
surface. The solution of the telegrapher’s equation with s
initial and boundary conditions presents an unusual bound
value problem that is analogous to propagation problem
which the boundary condition is dependent on time@23#.
Generalizing Eq.~3.1! to this case as

0

FIG. 3. Stress distributions calculated using Eq.~3.13! with p0

51.0, L51.0, andb50.5 with ~a! c51.0, a51.0, g50.8, and
c050.90, and~b! c53.0, a50.9, g50.5, andc050.95. The num-
bers represent the magnitude of the normalized stress,s/p0. Units
are arbitrary.
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FIG. 4. Calculated stress distributions using Eq.~3.13! showing the transition from fully wavelike stress propagation to diffus
propagation. The plots below the contour plots show the centerline stress compared to the exponential boundary condition. Herp051.0,
L51.0, b50.5, g50.5, andc050.95 with ~a! c51.0, a50.0, ~b! c51.0, a52.0, ~c! c513.0,a51000. Units are arbitrary.
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ith
szz~x,z!5(
k

AkGk~z!cos~kx! ~3.6!

we obtain

]2Gk~z!

]z2
1a

]Gk~z!

]z
1c2k2Gk~z!5c2k2bmh~z!,

~3.7!

wherebm5p0am /Ak with

am5
4~21!m

p~2m11!
, m50,1,2, . . . . ~3.8!

Equation~3.7! is solved explicitly as

Gk~z!5gk~z!2bmE
0

z

dz8h~z2z8!
]gk~z8!

]z8
. ~3.9!

Here k and m are defined in Eq.~3.3! and Ak is defined in
Eq. ~3.4!.
In a manner analogous to that used in the treatmen
Thompson@13#, we take the applied stress atz50 to have a
parabolic dependence:

s~x,0!5p0S c01~12c0!
12x2

L2 D . ~3.10!

Here, c05s(0,0)/p0, which ensures that the integrated a
plied pressure is equal top0. Evaluating Eq.~3.4!, we obtain

Ak5p0amFc013~12c0!S k2L228

k2L2 D G . ~3.11!

Equations~3.6! and ~3.9!, along with ~3.2! and ~3.11!,
constitute the result of Ref.@11# extended to realistic initial
and boundary conditions. In our further calculations, t
functional form ofh(z) will be taken to follow experimen-
tally observed stress behavior at the walls. A typical set
observations taken from Duwez and Zwell@16# is plotted in
Fig. 1 showing the stress at the boundary decreasing w
increasing depth. One way to model this is to takeh(z) to be
an exponentially decreasing function:
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h~z!5b1@~322c0!2b#e2gz. ~3.12!

Solving Eq.~3.9!, we obtain for the propagating stress

szz~x,z!5p0b1(
k

~Ak2p0amb!gk~z!coskx

1p0@~322c0!2b#(
k

c2k2am

~g2a/2!22Vk
2

3H e2gz2gk~z!1
g

Vk
e2~a/2!zsinh VkzJ

3coskx, ~3.13!

wheream andAk are defined in Eqs.~3.8! and~3.11!, respec-
tively.

The qualitative distribution of the stress in a compact c
be visualized, as described previously, through the den
distribution. We show here three such density distribution
Figs. 2~a!, 2~b!, and 2~c! as obtained by Train@9#, Aydin
et al. @6#, and Macleod and Marshall@10#, respectively. Data
in Figs. 2~a! and 2~b!, while referring to different materials
under vastly different conditions, are similar to each oth
and exhibit high density regions in the upper corners of
compact, low density regions in the lower corners, and n
monotonic behavior along the centerline. Figure 2~c! shows
the intriguing observation of multiple regions of high an
low density along the centerline. Our theory, as represen
by Eq.~3.13!, can describe the features in Fig. 2~c! as well as
in 2~a! and 2~b!. This is clear from a comparison of Figs. 2~a!
and 2~b! with the results of our theory in Fig. 3~a!, and of
Fig. 2~c! with our result as shown in Fig. 3~b!. One of the
interesting features of KSPH theory@11# is that oscillatory
behavior in the stress is predicted along the centerline of
compact as the result of the interference of reflected st
waves. Such behavior, apparent in the theoretical result,
3~b!, appears to have been observed in Macleod and M
shall’s compaction observations in uranium dioxide@see Fig.
2~c!#.

Indeed, as a result of the underlying use of the teleg
pher’s equation, KSPH theory is able to describe the en
range of behavior from wavelike to diffusive ‘‘propagation
of stress. In order to display this wide range of applicabil
of KSPH theory, we plot in Fig. 4 a series of contour plot
and centerline sections of the stress distribution as we cha
the parametersc and a. We note that the first maximum
along the centerline arises merely from the propagation
the initial high stress regions in the upper corners into
interior of the compact and is not a result of wavelike beh
ior. The second maximum appears as an oscillation abou
imposed boundary function and is present in Figs. 4~a! and
4~b!, but not in Fig. 4~c! where the parameters approach t
n
ty
n
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diffusive limit. This oscillation~second maximum! is a mani-
festation of the wave nature of the stress propagation.
also note that the magnitude of the first maximum along
centerline decreases in the transition from wave to diffus
propagation.

In Fig. 5 we display three-dimensional plots of the stre
distribution in the two extreme limits corresponding to t
contour plots in Figs. 4~a! and 4~c!, respectively. The plot
labeled ‘‘wave limit’’ corresponds to a vanishing value ofa,
and the one labeled ‘‘diffusive limit’’ toc,a→`, c2/a5D.
Although the authors of@5# and @19,20# did not carry out a
boundary value analysis as we have done in Ref.@11# and the
present paper, we will call these two extreme limits t
Bouchaud and the Liu limits, respectively. In both cases,
characteristic parabolic variation of the pressure at the
surface of the die~farther into the paper! is quite clear. As in
other treatments, this variation is an input to our theory. T
propagation of the curvature into the compact is, howev
determined by the theory. In both limits, one sees an inv
sion of the curvature as one goes towards larger depths.
inversion has been remarked on in the analysis of Thomp
@13# as an observed feature, but to our knowledge no ex
nation of it exists in the literature. In both limits, as on
progresses along the centerline down the die from the
surface, one encounters a maximum. However, the m
mum is a true peak~maximum from all directions! only in
the wave case. In the diffusive case the nature of the st
distribution is substantially different: only a ridge occur
This important difference is reflected in the contour plots
the presence~absence! of closed contours in the wave~dif-
fusive! limits. Additional maxima~oscillation! appear only
in the Bouchaud limit and not in the Liu limit, and aris
clearly from the wave ingredient of stress propagation
wall reflections.

IV. IS IT NECESSARY TO INVOKE
A NONLOCAL APPROACH?

The KSPH theory is based on a nonlocal constitutive
lation @11# that results in the telegrapher’s equation. We ha
shown above that it describes the qualitative features of
observations satisfactorily. However, it has also been sho
in Ref. @11# that the evolution equation reduces in an extre
limit to the diffusion equation and therefore to consideratio
presented by Liuet al. @19#. In that analysis, the random
propagation of stress from one particle to another
invoked—a condition that is appealing because of the r
dom nature of the particle sizes, shapes, and locations.
therefore natural to ask whether the diffusive limit wou
suffice to describe the observed stress distribution. We
an unequivocal answer to this question in the context of
experiments reported in Refs.@9,6,10#. Our reasoning is as
follows.

The diffusive limit of our equation~3.13! is
szz~x,z!5p0b1(
k

~Ak2p0amb!e2Dk2z coskx1p0@~322c0!2b#(
k

Dk2am

g2Dk2
$e2Dk2z2e2gz%coskx, ~4.1!
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wheream andAk are given by Eqs.~3.8! and~3.11!, respec-
tively. It is clear that it can predict no oscillations of stre
with changes in depth since no oscillations inz @no trigono-
metric functions as in Eq.~3.13!# appear in the right-hand
side of Eq.~4.1!. The wave ingredient of the telegrapher
equation is, thus, essential to explain the uranium diox
data. Furthermore, even for the data on magnesium car
ate and alumina, which exhibit no such oscillations, a care

FIG. 5. Three-dimensional plots of the stress distribution cal
lated using Eq.~3.13! in the wave limit (a50), and in the diffusive
limit ( c,a→`, c2/a5D). Units are arbitrary.
e
n-
l

analysis based on our predictions discussed in Fig. 4 lead
the conclusion that the diffusive limit is inadequate. Cruc
to this conclusion is the presence of true peaks, marked
closed contours, in the stress plots seen in all data displa
Several such peaks are noticed in the extreme wave lim
Fig. 4~a!. This wave tendency decreases as we progress f
cases~a! through ~c!, as the stress evolution becomes i
creasingly more diffusive. Indeed, no peaks appear in
diffusive limit as Fig. 4~c! shows. This is also clearly show
in the three-dimensional plots of Fig. 5. We therefore co
clude that there is a definite wave ingredient present in
stress distributions displayed in the experiments of Re
@9,6,10#.

For the sake of completeness, we have shown in Fig
predictions of our theory in the diffusive limit~4.1!. No
closed contours occur. Increasing the value of the diffus
constantD results in increased rate of diffusion of the wa
boundary condition into the compact.

Can other existing calculations of the stress describe
experimentally observed features? To answer this ques
we look at the calculations of Aydinet al. @6# who used a
nonlinear stress-strain constitutive model in a discrete
ment calculation to obtain a density distribution that we
produce here in Fig. 7. This calculation, using input from t

-

tion.
FIG. 6. Calculated stress distributions using Eq.~4.1! showing the effect of increasing the diffusion constant on the stress distribu
The plots below the contour plots show the centerline stress compared to the exponential boundary condition. Herep051.0, L51.0, b
50.5, g50.5, andc050.95 with ~a! D50.05, and~b! D51.0. Units are arbitrary.
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experimental conditions used to obtain the plot shown in F
2~b!, compares favorably in that the regions of high and l
density in the corners of the compact are calculated, but f
to predict the low and high density regions along the cen
line. Aydin et al. @6# acknowledge this failure explicitly and
suggest that it is due to the lack of inclusion of intern
friction effects between the particles. We suggest that
constitutive relations postulated by Aydinet al. describe in
detail the local interaction from one point particle to anoth
but do not describe long-range~nonlocal! correlations be-
tween particles.

V. REMARKS

The primary conclusions to be drawn from the pres
investigation are that~1! experimental data in the literatur
clearly document nonmonotonic behavior in the stress al
the axis of a cylindrical compact, as seen in direct obser
tions of stress@9# as well as in observations of density di
tributions in compacts of metallic and ceramic powders@6–
10#; ~2! our theory, as developed in Ref.@11#, and applied
here to realistic boundary conditions, predicts this behav
and that~3! wave aspects, as proposed by Bouchaudet al.
@5#, are essential to the understanding of the observation
Refs. @9,6,10#. The negativity problem mentioned in Re
@11#, i.e., that the calculation of the stress near the wave li

FIG. 7. Calculated density distribution~in percent solid density!
from Ref. @6# corresponding to experimental conditions that p
duced Fig. 2~b!.
od

r.
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ils
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l
e
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t
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in

it

can result in negative stress for certain parameter values
been addressed satisfactorily in the present paper by ta
the observed stress along the walls as an input through
appropriate choice of the termb in the boundary condition
given by Eq.~3.12!.

It is well known that wall lubrication plays a role in th
development of the observed distribution of stress in a co
pact, but its role has remained a mystery. While we have
resolved this mystery, we have incorporated wall effects
plicitly by taking h(z) as an input. By changing the func
tional behavior of the stress at the boundaries, the predi
stress distribution is changed. The functional form of t
boundary stress coupled with the finite ‘‘speed’’ of propag
tion through the granular medium manifests itself in t
shape of the centerline maximum that is seen in experime
observations. This suggests that the stress distribution wi
a powder compact may be used to evaluate the functio
form of the stress at the compact edge, and that in turn m
provide insight into the behavior of the frictional interactio
at the walls. That understanding may lead to specific w
lubrication schemes that can be implemented to minim
variations in the stress distribution.

With this demonstration of the ability of theory to predi
experimental observables, we can make specific recomm
dations for further studies, including:~1! the detailed experi-
mental measurement of the transmitted stress in thez direc-
tion at the walls of a cylindrical compact with various wa
lubrications schemes and their subsequent effect on the
sity ~and stress! distribution throughout the compact,~2! the
evaluation of these distributions using the KSPH theory@11#
with boundary conditions that match the experimental obs
vations,~3! the study of the effects of granular particle shap
composition, size distribution, packing density, etc. on va
ous parameters in Ref.@11# such asc, a, and in particular, on
the functional form of the spatial memory itself. With suc
an understanding, it would be possible to predict the str
propagation in compacts from morphological measurem
of granular particles, and, in that way, develop technique
optimize the compaction process.
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