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Nonlocal approach to the analysis of the stress distribution in granular systems.
[I. Application to experiment
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A theory of stress propagation in granular materials developed redétglykre, Scott, Pease, and Hurd,
preceding paper, Phys. Rev.5%, 5841(1998] is applied to the compaction of ceramic and metal powders in
pipes with previously unexplained experimental features such as nonmonotonic density and stress variation
along the axis of cylindrical compactsS1063-651X98)14505-1

PACS numbes): 81.05.Rm, 61.43.Gt, 81.20.Ev

I. BACKGROUND AND ESSENTIAL FEATURES describe density-pressure behavior for granular sysfégis
OF EXPERIMENTAL OBSERVATIONS 15].
Stress distribution observations include the experiments

Although the study of granular systems has recently beef Duwez and Zwel[16] who measured the pressure at the
come a topic of intense discussidi,2], the theoretical side wall of a cylindrical compact of copper powder as a
analysis of the stress behavior in bounded systems such asfunction of depth. The side pressure was found to decrease
powder metallurgical dies and ceramic compacts has bedmearly with distance away from the surface where the pres-
limited to simplified physical arguments concerning thesure was applied. Traif®] placed strain gauges within a fill
transmission of stress into the walls of the confining systenof magnesium carbonate powder in a cylindrical die and
[3-5]. While such discussions provide a physical picture ofmeasured the distribution of transmitted stress as a function
how stress in granular systems propagates, they do not prof applied pressure during the compaction process. Along the
vide for a calculation of observed features. Recent experieenterline of the compact, the transmitted stress was ob-
mental result$6], as well as data that have been available inserved to be a nonmonotonic function of the depth.
the literature for many yeais—10], show unique features The measurement of density distributions is exemplified
that have remained up to now unexplained. The present p&y the work of Kamm, Steinberg, and Wul[ff] who placed
per is an attempt to address such features with the help of & thin lead grid into a cylindrical copper powder fill, which
recently constructed theoretical framewdrkl]. Essential Was subsequently pressed. The distortion of the grid was
features of experimental observations are described in th@bserved using x rays to determine the local variations in the
rest of this section. A brief reminder of available theoreticaldensity distribution of the compact. High and low density
approaches appears in Sec. . We extend the theoreticK¢9ions were observed along the centerline of the compact,

framework of Ref.[11] to treat realistic depth-dependent while the density at the edge of the compact decreased from

boundary conditions and compare predictions of the theory?igh density in the upper comers to low density at the bot-

to observations in Sec. lll. In Sec. IV we investigate the om. Kuczynski and Zaplatynsk{] determined the density

importance of invoking a spatially nonlocal framework thatd|str|but|on of a nickel powder compact by sectioning it and

.testing the hardness of the compacted material as a function

geihzi;actenstm of our theory. Concluding remarks appear " location on the face of the section. By assuming a relation

. _between the density of the material to its hardness, a density
Generally, two approaches have been used to obtain &¥geyipution was produced showing behavior similar to that
perimental mformatlon_ about the propagation of stress in &gqp, by Kamnet al.[7]. The density along the top surface of
powder compact(1) direct measurement of the stress atyhe compact had a minimum in the center and increased to a
points within a compact, an@®) direct mapping of the den- jaximum value at the edge of the compact. Ti@hmea-
sity distribution within a compact. The first approach in- syred the density distribution of the magnesium carbonate
volves the use of pressure sensors or strain gauges within, @gmpacts that he used in his direct stress measurements by
at the edge of, a compact to measure the forces that evolv@achining away sections and measuring the weight and vol-
during pressing. Such measurements are limited by their agtme of the material removed. Contour plots of the density
curacy and the ability of such gauges to measure the diredistribution were produced showing the density for several
tion and location of the transmitted stress. The second apdifferent applied pressures. Well defined regions of high and
proach relies on the assumption that the density at a point ilow density along the centerline were observed, as well as
a compact is related to the magnitude of the transmitted apghe decreasing density along the edge of the compact.
plied stress at that point. Various forms of relations exist toMacleod and Marshal[10] compacted uranium dioxide
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powder in a cylindrical die for various applied pressures, 0.5 T T T T

then sectioned the compacts and placed them on photo-

graphic plates. Density distributions were obtained using 04l |
contact autoradiography, where the exposure was calibrated Z.O_ ’

by comparison with the optical density of plates that were £

exposed to uranium dioxide pellets with known densities. § 03 -
The contour plots they presented showed nonmonotonic be- &

havior along the centerline of the compacts, with several g 02l |
regions of high and low density. Along the top surface, the g ' —= 90 MPa

density was a function of radius, increasing from a minimum 5 —o— 620 MPa

at the center to a maxiumum at the edge of the compact, = 0.1} —A— 550 MPa -
similar to the observations of Kuczynski and Zaplatynskyi

[8]. Recently, Aydin, Briscoe, and Sanlitufi§] imbedded 0.0 | | | |

small lead balls in an alumina powder compact and used a 0.0 0.2 0.4 0.6 0.8 1.0
technique similar to that of Kamrmet al.[7] to determine the )

densitg distributions. Again, regions of high and low density Normalized Depth (2/zo)
were observed on the centerline, with the density at the edge FIG. 1. Measured stress at the edge of a cylindrical compact
of the compact decreasing with depth. Along the top surfac@ormalized to the average applied pressure and plotted as a function
of the compact, the density distribution, as a function of theof depth in the compadtaken from Duwez and Zwe[l16]). This
radius, exhibited a minimum at the centerline and increasedupports the use of a monotonic function to describe the stress at the
toward the edge of the compact, consistent with previousvalls.

observation$8,10].

From the experimental data found in the literature, and the Our theory{11] [Kenkre, Scott, Pease, and HUKISPH)]
widely accepted notiofil7] that the spatial variation of the based on consideratioh21,22 similar to those employed in
density follows, in essence, the spatial variation of the stressheories of exciton dynamics unifies the work of Bouchaud
three essential features describing the stress distribution iet al. [5] and Liu et al. [19] through the use of a spatially
compacts can be inferredl) the applied stress at the top nonlocal constitutive relation between the stresg(x,y,z)
surface is not constant, but increases from a minimum at thand a “stress flux”j (x,y,z), which is composed of the shear
center to a maximum at the edgé¢®) the stress at the edges components of stress in the plane perpendicular tatte
decreases with depth from the surface where the pressureiisction, along which the compaction pressure is applied. The
applied, and3) the stress along the centerline is a honmono-unification allows the KSPH theory to retain elements of the
tonic function of depth, with well defined regions of low and light cones of Bouchauet al. and their identification with
high stress. These features, which are common to observéie arches of Edwards and co-workg8s4] yet to incorpo-
tions made in a variety of powders over a wide range ofrate some of the random stress transmission ofetial. that
applied pressures, provide inputs, as well as a test for theenust accompany a realistic picture of the random packing in
retical treatments of the stress distribution in compacts: ngranular systems. The present paper consists of an extension
theoretical analysis known to us has adequately addressedfl KSPH theory to address boundary conditions of relevance
the appearance of nonmonotonic stress behavior along the experiment and of an application of the theory to several
axis. experimental observations in the literature.

II. DISCUSSION OF AVAILABLE THEORETICAL

ANALYSES Ill. EXTENSION OF THE KSPH THEORY

FOR REALISTIC BOUNDARY CONDITIONS

A number of theoretical approaches have been developed AND COMPARISON TO EXPERIMENT
to describe the stress behavior in granular systems. Janssen, . . . . .
[18] developed a theory that reproduced an exponential de- As_ln Ref. [11], we V\."I! restrict our analy§|s to wo di-
crease along the walls of a silo. That theory was modified b)'/“ens."pns X.2) for simplicity. For. the illustrative 'boundary
Thompson[13] to apply to ceramic powder compacts, but condition w’herecrzz(_i L/2,2) vamshes_, the solution of the
was unable to reproduce the nonmonotonic behavior alonff!€9rapher's equation for symmetric compacts has been
the centerline. Edwards and collaboratgs4] mathemati-  9iven in Ref.[11] as
cally described “stress arches” that are believed to carry the
stress to the walls of a pipe, but did not extend their theory to
stress distributions within powder compacts. Bouchatdl. o,4X,2)= E A 0y(2)coskx, (3.2
[5] proposed wavelike behavior for stress in granular sys- k
tems, and Liuet al.[19] investigated a diffusive mod¢20].
These were primarily interested in the calculation of thewhere
stress in sandpiles and did not produce stress maps for pow-
der compacts. Aydiret al. [6] used a nonlinear stress-strain w
constitutive relation in a finite-element calculation to pro- gu(2)=e" (27 coshQz+ s~ sinh Q,z|,
duce stress distributions that were similar to experimental 20
results, but failed to reproduce the observed density peak
along the compact centerline. Q= a?l4—c?k? (3.2
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FIG. 3. Stress distributions calculated using E213 with pg
=1.0,L=1.0, andB=0.5 with (a) ¢c=1.0, «a=1.0, y=0.8, and
cp=0.90, and(b) c=3.0,a2=0.9, y=0.5, andcy=0.95. The num-
bers represent the magnitude of the normalized steegg,. Units
are arbitrary.

2 (L2
Akz—f dx o(x,0)coskx. (3.9
L/-wr

In the present paper, our interest is in obtaining stress
distributions for systems with realistic rather than illustrative

drical compacts ofa) magnesium carbonate powder pressed at 20(jnitiaI and boundary conditions. Thereforg, we do .nOt take
MPa (taken from Train[9]), (b) alumina powder pressed at 38.6 9z *L/2.Z) to vanish, but rather to be a given functio(z)

MPa (taken from Aydinet al.[6]), and(c) uranium dioxide powder
pressed at 160 MPdaken from Macleod and Marsh4dll0]).

and

k=(2m+1)

3

m=0,1,2 ... .

of the depth:
0,4%,2)|x= +L12=Poh(2), (3.9

wherep, is the average value of the applied stress at the top
surface. The solution of the telegrapher’s equation with such
initial and boundary conditions presents an unusual boundary
value problem that is analogous to propagation problems in

The Fourier coefficients are determined by the applied preswhich the boundary condition is dependent on tif28].

sure on the top surface;(x,0):

Generalizing Eq(3.1) to this case as
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FIG. 4. Calculated stress distributions using E8.13 showing the transition from fully wavelike stress propagation to diffusive
propagation. The plots below the contour plots show the centerline stress compared to the exponential boundary condipign 1tere
L=1.0,8=0.5, y=0.5, andcy=0.95 with(a) c=1.0, «=0.0, (b) c=1.0, «=2.0, (c) c=13.0,«=1000. Units are arbitrary.

0,4%2)= > AG(2)cos(kx) (3.6)
k
we obtain
9*Gy(z IG(z
kz( UNAC )+02k2Gk(z)=c2k2bmh(z),
07 0z
(3.7)
whereb,,= poa,, /Ay with
_ AL -0.1 3.8
am—m, m—,,2.... ()
Equation(3.7) is solved explicitly as
z ,. 99k(Z")
Gk(z):gk(z)—bmfodz h(z—z )T. (3.9

Herek andm are defined in Eq(3.3) and A is defined in
Eq. (3.4).

In a manner analogous to that used in the treatment of
Thompsor[13], we take the applied stresszat 0 to have a
parabolic dependence:

o(x,0)=pg (3.10

L2

12x2
Co+ (1_ Co)_ .

Here, co=0(0,0)/py, Which ensures that the integrated ap-
plied pressure is equal @,. Evaluating Eq(3.4), we obtain

k?L%-8

kL2 ||
Equations(3.6) and (3.9), along with (3.2) and (3.11),

constitute the result of Refl11] extended to realistic initial

and boundary conditions. In our further calculations, the

functional form ofh(z) will be taken to follow experimen-

tally observed stress behavior at the walls. A typical set of

observations taken from Duwez and Zwielb] is plotted in

Fig. 1 showing the stress at the boundary decreasing with

increasing depth. One way to model this is to thke) to be

an exponentially decreasing function:

(3.11)

A= Poam

co+3(1—co)<
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h(z)=B+[(3—2c,) — Ble” . (3.12 diffusive limit. This oscillation(second maximuins a mani-
festation of the wave nature of the stress propagation. We
Solving Eq.(3.9), we obtain for the propagating stress also note that the magnitude of the first maximum along the

centerline decreases in the transition from wave to diffusive
propagation.
In Fig. 5 we display three-dimensional plots of the stress

Uzz(X-Z)ZPOIB’LEk (A= PoamB)gk(Z)coskx distribution in the two extreme limits corresponding to the
contour plots in Figs. @ and 4c), respectively. The plot
c’k’a, labeled “wave limit” corresponds to a vanishing value @f

+pol(3—2¢co)— 81X

TR T . . T _ 2 —
- —(y_ 22— 0,2 and the one labeled “diffusive limit” ta,«—%, c“/a=D.

Although the authors df5] and[19,20 did not carry out a

y boundary value analysis as we have done in Ref|l and the
X1e —g(z)+ Q—e(“’z)zsinhﬂkz) present paper, we will call these two extreme limits the
k Bouchaud and the Liu limits, respectively. In both cases, the
X coskx, (3.13 characteristic parabolic variation of the pressure at the top

surface of the diéfarther into the papeiis quite clear. As in
other treatments, this variation is an input to our theory. The
tively propagation of the curvature into the compact is, however,

The qualitative distribution of the stress in a compact car‘fj?te"?”;]ed by the theory. In both I|m|ts,dor|1e seez anhlnv_errr;
be visualized, as described previously, through the densi't_f'On of the curvature as one goes towards larger deptns. The

wherea,,, andA, are defined in Eqg3.8) and(3.11), respec-

distribution. We show here three such density distributions i nversion has been remarked on in the analysis of Thompson
Figs. 2a), 2(b), and Zc) as obtained by Traifi9], Aydin 13] as an observed feature, but to our knowledge no expla-

et al.[6], and Macleod and MarshdlL0], respectively. Data nation of it exists in the literature. In both limits, as one
in Figs. 2a) and 4b), while referring to different materials progresses along the centerline down the die from the top

under vastly different conditions, are similar to each Othelsurfac.e, one encounter_s a maximum. I_-|ow9ver, the_ maxi-
. dnum is a true peakmaximum from all directionsonly in

the wave case. In the diffusive case the nature of the stress

compact, low density regions in the lower corners, and non= =~ """~ ~© : : :
b y €9 distribution is substantially different: only a ridge occurs.

monotonic behavior along the centerline. Figufe) Zhows 0 ; ; . X
the intriguing observation of multiple regions of high and This important difference is reflected in the contour p!ots in
low density along the centerline. Our theory, as represente&e. pre;er)céabsenp)aof C'OS‘?d conto_urs. in the waelif-
by Eq.(3.13, can describe the features in FigcRas well as _uswe) limits. Add't_'of‘a' maX|m§(OSC|IIat!or)_appear only

in the Bouchaud limit and not in the Liu limit, and arise

in 2(a) and 2b). This is clear from a comparison of Figgap ; . . i
and 2Zb) with the results of our theory in Fig.(8, and of cleﬁrlyﬂfrom the wave ingredient of stress propagation via
' wall reflections.

Fig. 2(c) with our result as shown in Fig.(8). One of the
interesting features of KSPH theof{1] is that oscillatory
behavior in the stress is predu;ted along the centerline of the IV IS IT NECESSARY TO INVOKE
compact as the res.ult of the mtgrference of rgflected stress A NONLOCAL APPROACH?
waves. Such behavior, apparent in the theoretical result, Fig.
3(b), appears to have been observed in Macleod and Mar- The KSPH theory is based on a nonlocal constitutive re-
shall's compaction observations in uranium dioxjdee Fig. lation[11] that results in the telegrapher’s equation. We have
2(0)]. shown above that it describes the qualitative features of the
Indeed, as a result of the underlying use of the telegraebservations satisfactorily. However, it has also been shown
pher's equation, KSPH theory is able to describe the entiréin Ref.[11] that the evolution equation reduces in an extreme
range of behavior from wavelike to diffusive “propagation” limit to the diffusion equation and therefore to considerations
of stress. In order to display this wide range of applicabilitypresented by Liuvet al. [19]. In that analysis, the random
of KSPH theory, we plot in Fig4 a series of contour plots propagation of stress from one particle to another is
and centerline sections of the stress distribution as we changevoked—a condition that is appealing because of the ran-
the parameters and a«. We note that the first maximum dom nature of the particle sizes, shapes, and locations. It is
along the centerline arises merely from the propagation ofherefore natural to ask whether the diffusive limit would
the initial high stress regions in the upper corners into thesuffice to describe the observed stress distribution. We find
interior of the compact and is not a result of wavelike behav-an unequivocal answer to this question in the context of the
ior. The second maximum appears as an oscillation about thexperiments reported in Refg9,6,10. Our reasoning is as
imposed boundary function and is present in Figs) 4nd  follows.
4(b), but not in Fig. 4c) where the parameters approach the The diffusive limit of our equatiori3.13 is

2
Dk“a, oKz

0,4X,2)=PpoB+ Ek (Ax—PoamB)e K2 coskx+ pol (3—2¢o) — ﬂ]; Dkz{e e "coskx, (4.1
v
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wave-limit _ diffusive-limit analysis based on our predictions discussed in Fig. 4 leads to
the conclusion that the diffusive limit is inadequate. Crucial
to this conclusion is the presence of true peaks, marked by
closed contours, in the stress plots seen in all data displayed.
Several such peaks are noticed in the extreme wave limit in
Fig. 4(a). This wave tendency decreases as we progress from
cases(a) through (c), as the stress evolution becomes in-
creasingly more diffusive. Indeed, no peaks appear in the
diffusive limit as Fig. 4c) shows. This is also clearly shown
in the three-dimensional plots of Fig. 5. We therefore con-
30 2'f(a:b.um{s> clude that there is a definite wave ingredient present in the
stress distributions displayed in the experiments of Refs.
FIG. 5. Three-dimensional plots of the stress distribution Ca|CU-[9,6'1q_
Igtgd using Eq(3.13 in the wave limit (a.= 0), and in the diffusive For the sake of completeness, we have shown in Fig. 6
limit (¢,a— o, ¢*/a=D). Units are arbitrary. predictions of our theory in the diffusive limit4.1). No
closed contours occur. Increasing the value of the diffusion
wherea,, andA, are given by Eqs(3.8) and(3.11), respec- constantD results in increased rate of diffusion of the wall
tively. It is clear that it can predict no oscillations of stressboundary condition into the compact.
with changes in depth since no oscillationszifino trigono- Can other existing calculations of the stress describe the
metric functions as in Eq(3.13] appear in the right-hand experimentally observed features? To answer this question,
side of Eqg.(4.1). The wave ingredient of the telegrapher's we look at the calculations of Aydiet al. [6] who used a
equation is, thus, essential to explain the uranium dioxideonlinear stress-strain constitutive model in a discrete ele-
data. Furthermore, even for the data on magnesium carboment calculation to obtain a density distribution that we re-
ate and alumina, which exhibit no such oscillations, a carefuproduce here in Fig. 7. This calculation, using input from the
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FIG. 6. Calculated stress distributions using Ef1) showing the effect of increasing the diffusion constant on the stress distribution.
The plots below the contour plots show the centerline stress compared to the exponential boundary conditipp=Hé&rd =1.0, 8
=0.5, y=0.5, andcy=0.95 with(a) D=0.05, and(b) D=1.0. Units are arbitrary.
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can result in negative stress for certain parameter values, has
been addressed satisfactorily in the present paper by taking
the observed stress along the walls as an input through an
appropriate choice of the ter@ in the boundary condition
given by Eq.(3.12.

It is well known that wall lubrication plays a role in the
development of the observed distribution of stress in a com-
pact, but its role has remained a mystery. While we have not
resolved this mystery, we have incorporated wall effects ex-
plicitly by taking h(z) as an input. By changing the func-
tional behavior of the stress at the boundaries, the predicted
stress distribution is changed. The functional form of the
boundary stress coupled with the finite “speed” of propaga-

! tion through the granular medium manifests itself in the
shape of the centerline maximum that is seen in experimental
observations. This suggests that the stress distribution within
a powder compact may be used to evaluate the functional
form of the stress at the compact edge, and that in turn may
provide insight into the behavior of the frictional interaction

; : : at the walls. That understanding may lead to specific wall
2(b), compares favorably in that the regions of high and lov_vlubrication schemes that can be implemented to minimize
density in the corners of the compact are calculated, but fa'|§ariations in the stress distribution

to predict the low and high density regions along the center- With this demonstration of the ability of theory to predict

line. Aydin et al.[6] acknowledge this failure explicitly and experimental observables, we can make specific recommen-

suggest that it is due to the lack of inclusion of internal y 4 for further studies, includingt) the detailed experi-
friction effects between the particles. We suggest that th‘?nental measurement of the transmitted stress ire tHigec-

;o?s.'flilﬁtlvle rell'c_1t|tons ‘t).OStl];"ated by Ayd:n al.t.dlestcrlbe IPh tion at the walls of a cylindrical compact with various wall
etar’ the local intéraction from one point particle 1o another,,, j-4tions schemes and their subsequent effect on the den-

but do not describe long-rang@onloca) correlations be- sity (and stressdistribution throughout the compad®) the
tween particles. evaluation of these distributions using the KSPH thgdrdj
with boundary conditions that match the experimental obser-
V. REMARKS vations,(3) the study of the effects of granular particle shape,
{:omposition, size distribution, packing density, etc. on vari-
ous parameters in Rdfl1] such as, «, and in particular, on
§1e functional form of the spatial memory itself. With such

FIG. 7. Calculated density distributigin percent solid densily
from Ref. [6] corresponding to experimental conditions that pro-
duced Fig. 2).

experimental conditions used to obtain the plot shown in Fig

The primary conclusions to be drawn from the presen
investigation are thafl) experimental data in the literature

clearly document nonmonotonic behavior in the stress alon . . ; .
the axis of a cylindrical compact, as seen in direct observad” understanding, it would be possible to predict the stress

tions of stres§9] as well as in observations of density dis- propagation in _compacts from morphological measgrement
tributions in compacts of metallic and ceramic powdes of granular particles, and, in that way, develop techniques to

10]; (2) our theory, as developed in RéfL1], and applied optimize the compaction process.
here to realistic boundary conditions, predicts this behavior;
and that(3) wave aspects, as proposed by Bouchatidl.

[5], are essential to the understanding of the observations in This work was supported in part by Sandia National
Refs.[9,6,10. The negativity problem mentioned in Ref. Laboratories under Department of Energy Contract No. DE-
[11], i.e., that the calculation of the stress near the wave limitAC04-94A85000.
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